113 Class Problems: Normal Subgroups and Isomor-
phism Theorems

1. Let p be a prime number and H be a group. Prove the following:
If ¢ : Z/pZ — H is a homomorphism, then either ¢ (i.e Im(¢) = {en}) or ¢ is injective.
Hint: Consider the kernel of ¢.
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2. Let H = {e,(123),(132)} C Symy. By giving an example, show that the following
binary operation is not well-defined:

Symy/H x Symy/H — Symy/H
(xH,yH) — xyH
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3. Let GG, H be two finite groups. Prove the following:
If there exists a non-trivial ¢ : G — H (ie. Im(¢) # {ex}) then HCF (|G|, |H|) > 1
Hint: Think about the First Isomorphism Theorem.
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4. Let N be a normal subgroup of G. If (G : N) = 7 determine all subgroups H C G such
that N C H.

Hint: Think about the Third Isomorphism Theorem.
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