113 Class Problems: Normal Subgroups and Isomorphism Theorems

1. Let p be a prime number and H be a group. Prove the following:

If $\phi: \mathbb{Z}/p\mathbb{Z} \to H$ is a homomorphism, then either ϕ (i.e $Im(\phi) = \{e_H\}$) or ϕ is injective.

Hint: Consider the kernel of ϕ .

Solution:

ker
$$\beta$$
 \subset $\mathbb{Z}/p\mathbb{Z}$ a subgroup.

=) $|\ker \beta| = | \Rightarrow |\ker \beta| = | \Rightarrow$

2. Let $H = \{e, (123), (132)\} \subset Sym_4$. By giving an example, show that the following binary operation is not well-defined:

$$Sym_4/H \times Sym_4/H \rightarrow Sym_4/H$$

 $(xH, yH) \mapsto xyH$

Solutions:

(et
$$x_1 = y_1 = (14)$$
) $x_2 = y_2 = (14)(123) = (1234)$
 $x_1y_1 H = eH$
 $x_1H = x_2H$
 $x_2y_2H = (1234)^2H = (13)(24)H$

(13)(24) $x_2 = y_2 = (14)(123) = (1234)$
 $x_1 = x_2 = y_2 = (14)(123) = (1234)$

3. Let G, H be two finite groups. Prove the following:

If there exists a non-trivial $\phi: G \to H$ (ie. $Im(\phi) \neq \{e_H\}$) then HCF(|G|, |H|) > 1.

Hint: Think about the First Isomorphism Theorem.

Solutions:

4. Let N be a normal subgroup of G. If (G:N)=7 determine all subgroups $H\subset G$ such that $N\subset H$.

Hint: Think about the Third Isomorphism Theorem.

Solutions: